A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM2.5 prediction
نویسندگان
چکیده
A three-dimensional variational data assimilation (3-DVAR) algorithm for aerosols in a WRF/Chem model is presented. The WRF/Chem model uses the MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) scheme, which explicitly treats eight major species (elemental/black carbon, organic carbon, nitrate, sulfate, chloride, ammonium, sodium and the sum of other inorganic, inert mineral and metal species) and represents size distributions using a sectional method with four size bins. The 3-DVAR scheme is formulated to take advantage of the MOSAIC scheme in providing comprehensive analyses of species concentrations and size distributions. To treat the large number of state variables associated with the MOSAIC scheme, this 3-DVAR algorithm first determines the analysis increments of the total mass concentrations of the eight species, defined as the sum of the mass concentrations across all size bins, and then distributes the analysis increments over four size bins according to the background error variances. The number concentrations for each size bin are adjusted based on the ratios between the mass and number concentrations of the background state. Additional flexibility is incorporated to further lump the eight mass concentrations, and five lumped species are used in the application presented. The system is evaluated using the analysis and prediction of PM2.5 in the Los Angeles basin during the CalNex 2010 field experiment, with assimilation of surface PM2.5 and speciated concentration observations. The results demonstrate that the data assimilation significantly reduces the errors in comparison with a simulation without data assimilation and improved forecasts of the concentrations of PM2.5 as well as individual species for up to 24 h. Some implementation difficulties and limitations of the system are discussed.
منابع مشابه
Assimilating MODIS aerosol optical depth using WRF/Chem and GSI: Application to a Chinese dust storm
Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed ...
متن کاملThe impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States
The Gridpoint Statistical Interpolation threedimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improve...
متن کاملImplementation of aerosol assimilation in Gridpoint Statistical Interpolation
Gridpoint Statistical Interpolation (GSI) is an assimilation tool that is used at the National Centers for Environmental Prediction (NCEP) in operational weather forecasting in the USA. In this article, we describe implementation of an extension to the GSI for assimilating surface measurements of PM2.5, PM10, and MODIS aerosol optical depth at 550 nm with WRF-Chem (Weather Research and Forecast...
متن کاملAerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts
An aerosol optical depth (AOD) three-dimensional variational data assimilation technique is developed for the Gridpoint Statistical Interpolation (GSI) system for which WRF-Chem forecasts are performed with a detailed sectional model, the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Within GSI, forward AOD and adjoint sensitivities are performed using Mie computations from ...
متن کاملAssimilation of Multiple-doppler Radar Data with the Wrf 3-d Var and a Cloud Analysis
A reliable application of a numerical weather prediction to short-range quantitative precipitation forecasting (QPF) is needed to forecast disastrous severe storms. The success of the dynamic, thermodynamic, and microphysical retrievals at the convective scale using Doppler radar observations are important but still great challenges. The use of three-dimensional variational data assimilation (3...
متن کامل